Question			Answer	Marks	Guidance
1	(a)	(i)	potential difference (across a component)/current (in it)	B1	allow symbols if symbols defined; voltage or p.d.; allow per not over
		(ii)	read 10 V from graph $\begin{aligned} (\mathrm{R}=\mathrm{V} / \mathrm{I} & =10 / 0.04 \\ & =250(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	allow 9.8 or 9.9 ecf reading from graph
	(b)		$\begin{aligned} & \mathrm{R}=\rho \mathrm{l} / \mathrm{A} \text { or } \rho=\mathrm{RA} / \mathrm{l} \\ & \rho=250 \times 1.2 \times 10^{-3} \\ & \rho=0.30(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	select formula mark ecf(a)(ii); a correct substitution correct answer allow 0.3
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	(c)		(graph curves so) R changes qualification: I increases faster than V increased temperature is caused by (larger) current in slice qualification: $P=I^{2} R$ as R decreases ρ decreases	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	allow R increases or decreases allow: by calculating two values of R do not allow either of the first two marking points if reference made linking gradient and R value QWC mark; allow heating effect is caused by.... allow ' R decreases' already stated earlier in answer max 3 out of $4+$ QWC mark
			Total	10	

Question			Answer	Marks	Guidance
2	(a)	(i)	energy transfer per unit charge from chemical/other to electrical form	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow energy per unit charge
		(ii)	$\begin{aligned} & (\mathrm{Q}=\mathrm{It}=) 200 \times 4 \times 60 \times 60 \\ & =2.9 \times 10^{6}(\mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept 200×14400 accept 2.88×10^{6}
		(iii)	$\begin{aligned} & \mathrm{E}=\mathrm{QV}=2.88 \times 10^{6} \times 24 \\ & =6.9 \times 10^{7}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept 72 MJ if using 3 MC or 69.6 or 70 if using 2.9 MC
	(b)	(correct symbol and polarity connected to X and Y	B1	allow one cell or more or two cells with dotted lines between
$\begin{aligned} & \mathrm{A} \\ & \text { A } \\ & \text { A } \end{aligned}$		(ii)	$\begin{aligned} & V=30-24=6 \mathrm{~V} \\ & \mathrm{R}=\mathrm{V} / \mathrm{I}=6 / 120 \\ & =0.05(\Omega) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	evidence of the V subtraction needed do not allow use of $E=V+I r$; it must be $I R$
		(iii)	$\begin{aligned} & \mathrm{P}=\mathrm{VI}=6 \times 120 \\ & =720\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	or $\mathrm{I}^{2} \mathrm{R}=120^{2} \times 0.05$ or $\mathrm{V}^{2} / \mathrm{R}=6^{2} / 0.05$
		(iv)	$\begin{aligned} & (3600-720) / 3600=2880 / 3600 \\ & =0.8 \\ & =80(\%) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf b(iii); using 2880 instead of 3600 gives 75\%; scores zero allow $(30-6) I / 30 I=24 / 30=0.8=80(\%)$
	(c)	($\begin{aligned} & \mathrm{t}=\mathrm{Q} / \mathrm{I}=2.88 \times 10^{6} / 120 \text { or } \mathrm{E} / \mathrm{VI}=69 \times 10^{6} /(24 \times 120) \\ & \mathrm{t}=2.4 \times 10^{4} / 3600=6.7 \mathrm{~h} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	ecf (a)(iii); accept 3×10^{6} giving $2.5 \times 10^{4} \mathrm{~s}$ and 6.9 h allow ora using 7.0 h giving $\mathrm{E}=72.5 \mathrm{MJ}$
		(ii)	$\begin{aligned} & \text { power supplied }=30 \times 120 / 1000=3.6 \mathrm{~kW} \\ & \text { cost }=3.6 \times 7 \times 26=655(p) \end{aligned}$	A1	ecf c(i) accept any consistent answer do not allow 2.88 kW giving 524 p unless repeated error from b(iv)
			Total	17	

