Question		on	Answer	Marks	Guidance
1	(a)	(i)	potential difference (across a component)/current (in it)	B1	allow symbols if symbols defined; voltage or p.d.; allow per not over
		(ii)	read 10 V from graph (R = V/I =) 10/ 0.04 = 250 (Ω)	C1 M1 A0	allow 9.8 or 9.9 ecf reading from graph
	(b)		$ \begin{array}{l} {\sf R} = \rho{\sf I}/{\sf A} \; {\rm or} \; \rho = {\sf R}{\sf A}/{\sf I} \\ \rho = 250 \; {\rm x} \; 1.2 \; {\rm x} \; 10^{-3} \\ \rho = 0.30 \; (\Omega \; {\rm m}) \end{array} $	C1 C1 A1	select formula mark ecf(a)(ii); a correct substitution correct answer allow 0.3
A A A	(c)		(graph curves so) R changes qualification: I increases faster than V increased temperature is caused by (larger) <u>current</u> in slice qualification: P = I ² R as R decreases ρ decreases	B1 B1 B1 B1 B1 B1	 allow R increases or decreases allow: by calculating two values of R do not allow either of the first two marking points if reference made linking gradient and R value QWC mark; allow heating effect is caused by allow 'R decreases' already stated earlier in answer max 3 out of 4 + QWC mark
			Total	10	

Question		on	Answer	Marks	Guidance
2	(a)	(i)	energy transfer per unit charge from chemical/other to electrical form	B1 B1	allow energy per unit charge
		(ii)	$(Q = It =) 200 \times 4 \times 60 \times 60$ = 2.9 × 10 ⁶ (C)	M1 A1	accept 200 x 14400 accept 2.88 x 10 ⁶
		(iii)	$E = QV = 2.88 \times 10^{6} \times 24$ = 6.9 × 10 ⁷ (J)	C1 A1	accept 72 MJ if using 3 MC or 69.6 or 70 if using 2.9 MC
	(b)	(correct symbol and polarity connected to X and Y	B1	allow one cell or more or two cells with dotted lines between
A A A		(ii)	V = 30 - 24 = 6 V R = V/I = 6/120 = 0.05 (Ω)	M1 M1 A0	evidence of the V subtraction needed do not allow use of E = V + I r ; it must be I R
		(iii)	$P = VI = 6 \times 120$ = 720 (J s ⁻¹)	C1 A1	or $I^2 R = 120^2 \times 0.05$ or $V^2/R = 6^2 / 0.05$
		(iv)	(3600 - 720)/3600 = 2880/3600 = 0.8 = 80 (%)	C1 C1 A1	ecf b(iii); using 2880 instead of 3600 gives 75%; scores zero allow (30 − 6) <i>I</i> /30 <i>I</i> = 24/30 = 0.8 = 80 (%)
	(c)	(t = Q/I = $2.88 \times 10^{6}/120$ or E/VI = $69 \times 10^{6}/(24 \times 120)$ t = $2.4 \times 10^{4}/3600 = 6.7$ h	M1 A1	ecf (a)(iii); accept 3×10^6 giving 2.5 x 10^4 s and 6.9 h allow ora using 7.0 h giving E = 72.5 MJ
		(ii)	power supplied = 30 x 120/1000 = 3.6 kW cost = 3.6 x 7 x 26 = 655 (p)	A1	ecf c(i) accept any consistent answer do not allow 2.88 kW giving 524 p unless repeated error from b(iv)
			Total	17	